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models that have a direct clinical relevance to an open

cutaneous wound.

2. Significance of biofilm in wounds

Chronic wounds are a significant and growing problem in

healthcare today. Healthcare costs associated with chronic

wound management and treatment in the United States were

estimated to be upwards of $20 billion $25 billion annually in

2008 [1e4,40e49]. However, these costs do not include the

impact on patient lifestyle, financial security, and overall well

being, which in aggregate represent an immeasurable burden

[50e53]. The management of chronic wounds has long relied

on the basic principles of debridement, lavage,wound tailored

dressings, and antimicrobial therapy when necessary as

a systematicmeans to increase the potential for healing either

naturally or through surgical intervention [54e60]. A tremen

dous investment in research funding and a broader interest on

the part of clinicians and scientists has led to significant

progress in wound science, but the incidence of chronic

wounds and associated complications, such as amputations,

continues to growat an epidemic rate. This is in part due to the

growing rate of other chronic diseases that can impact healing

within this vulnerable population, most notably obesity, dia

betes mellitus, and peripheral vascular disease [61e67], but it

likely is also due to an incomplete understanding of the

contributing factors that result in a chronic wound.

Bacterial biofilms are a key factor whose importance to

wound chronicity and persistence has only recently become

widely appreciated [5e19]. A bacterial biofilmcan be defined as

a complex community of aggregated bacteria embedded

within a self secreted matrix of extracellular polymeric

substance, or EPS [5,11,13,22] (Fig. 1). This phenotype, thought

to be the preferred state of bacteria in their native habitats, is

distinct from the free floating, so called “planktonic” bacteria

that have been extensively studied and manipulated by

microbiologists in laboratory settings for over a century [68].

Biofilms are harbored on surfaces throughout the body such as

dental enamel, nasal epithelium, urinary tract mucosa, and

endocardium, forming relationships that are either purely

commensal (e.g., gastrointestinalmucosa) or pathogenicwhen

established ectopically in tissue that has not developed the

immunologic defenses to clear or co exist with the bacterial

biofilm (e.g., lung mucosa in association with cystic fibrosis)

[10,11,22,69e71]. In addition, infections in foreign materials

such as implantable orthopedic and cosmetic prosthetics or

intravenous catheters are now thought to be secondary to

surface biofilms that form on the implant at the time of

insertion or later as a result of hematologic seeding

[22,69,72e75]. Human skin represents the largest barrier to

outside environmental pathogens in the body, however, its

protective mechanisms become compromised on creation of

a wound, allowing for exposure to a variety of bacterial flora.

The moist, nutritionally supportive microenvironment of the

wound bed matrix becomes an ideal setting for formation of

bacterial biofilm, creating a destructive and sustainable

interaction that impairs host wound healing [13,76]. In most

wounds, the inflammatory phase of healingpromptly removes

devitalized tissue debris and bacteria, thereby enabling the

progression into the synthetic and remodeling phases of

healing, but in the impaired host (e.g., vascular insufficiency,

microvascular disease, diabetes, ischemia reperfusion injury),

the uncleared, excessive bacterial burden triggers an elevated,

but ineffective, inflammatory response [13,77]. This prolonged,

chronic inflammatory state further contributes to the inhibi

tion of wound healing pathways [13].

Understanding the structure and physiology of bacterial

biofilms is crucial when discussing its inhibitory effects on

wound healing (Fig. 2).The presence of bacterial biofilms in

chronic wounds has been confirmed by both imaging and other

sophisticated molecular sampling techniques [11,14]. The

emergence of molecular techniques over traditional culture

dependent methods, which rely on a swab or tissue biopsy,

has led to a number of significant findings [15,78,79]. It is now

appreciated that theamountofbacteriawithinachronicwound

is often underestimated when analyzed with traditional

microbial assays, particularly inwoundswith slowor fastidious

growing bacteria [14,80e83]. Furthermore, the majority of

chronic wound biofilms have been shown to consist of amixed

population ofmultiple bacterial species [11,13,18]. Predominant

bacteria isolated include various anaerobes, Serratia, Staphylo

coccus, and Pseudomonas, with one study demonstrating an

average of 5.4 species of bacteria in each chronic humanwound

[84]. In addition to their polybacterial nature, all biofilms

(including those inwounds) are inherently robust and resistant

to host defense mechanisms. The EPS generated by biofilm

state bacteria creates a physical barrier that reduces the effi

cacy of phagocytosis by inflammatory cells such as neutrophils

and macrophages, while also inhibiting activation of the

Fig. 1 e Morphology of bacterial biofilm on scanning electron microscopy. Images demonstrate consistency of biofilms

formed by Staphylococcus aureus (A) and Pseudomonas aeruginosa (B) in wounds of the rabbit ear. Note the presence of cocci

(A) and rod-shaped (B) bacterial cells within a matrix of extracellular polymeric substance, or EPS. (Magnification: 32000)
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complement cascade [20,21,85]. As stated earlier, this ineffec

tiveness can result in chronic release of proinflammatory

cytokines that can damage nearby tissue [22]. An innate resis

tance to antimicrobials, potentially up to 1000 timesmore than

their planktonic counterparts, is also characteristic of bacterial

biofilm [86]. This has been explained by the inability of antibi

otics to penetrate the EPS, and their potential inactivation by

alterations within the biofilm microenvironment [22e24].

Furthermore, biofilm bacteria demonstrate a decreased growth

rate, leaving them in a sessile state that is less susceptible to

most antibiotics, which are typically designed to target rapidly

dividing, planktonic bacteria [5,69]. There is also evidence that

cell to cell signaling between bacteria within a biofilm, so

called quorum sensing, is integral to biofilm development and

maintenance [11,25], while alterations in bacterial gene

expression and transfer of genetic material between bacteria

may enhance inherent survival mechanisms [86]. Finally, the

shedding of planktonic bacteria as well as the maintenance of

a phenotypically different “persister” cell population are

mechanisms for biofilm sustainability and durability within

a hostile environment [11,12].

3. Importance of in vivo modeling

Although a rapidly growing field of study, there remains an

immense gap in basic knowledge aboutmanyaspects of biofilm

behavior and formation, particularly in the in vivo setting. Given

theneed for new therapeutic approaches in themanagementof

chronic wounds, the importance of understanding the intrica

cies of biofilm infectedwounds cannot be overstated. Research

aimed at elucidating the properties of bacterial biofilm and its

interactions with the host inflammatory cascade is critical to

improving this knowledge base. In particular, the interplay

between bacteria and host, represented locally by the wound

bed itself, is responsible for some of the defining characteristics

of chronic wounds [87,88], and this interplay is not evaluable

with in vitro models and assays [26e29]. Although such experi

ments have provided essential knowledge regarding biofilm

resistance and survival mechanisms, such as the inhibitory

effect of biofilm against cultured human keratinocytes [89], the

complexity of the interaction between bacterial biofilms and

humanwoundhealing pathways is difficult to extrapolate from

in vitro biofilm studies.

The lack of adequate in vivo models has made it difficult to

faithfully model wound biofilms. Human studies are logisti

cally and ethically prohibitive, leaving animal models as the

sole practical alternative for systematic investigation and

modulation of clinically relevant biofilms. The use of an

animal model allows for multiple iterations of experimenta

tion and analysis that cannot be afforded with human

research, while allowing for a closer semblance of the biofilm

host interaction that is lacking with in vitro models. Addition

ally, the translational nature of in vivo modeling provides

a more immediate understanding of parallel pathways and

mechanisms inhumanbiofilm infected chronicwounds, thus,

potentially driving further clinical research. Therefore, an

effective in vivo model should not only contribute to our

scientific and conceptual understanding of biofilm in, but

should also provide a foundation and methodology for

systematically examining biofilm infected wounds in

a precise and quantitative manner.

4. Published in vivo models

We believe that an appropriate, consistent, and translatable

in vivo model of wound biofilm should possess several

different, but important, characteristics upon which the

strength of a model can be determined (Table 1). A growing

Fig. 2 e Schematic diagram of different characteristics of bacterial biofilm, including mechanisms of virulence, defense, and

persistence.
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to a greater amount of local and systemic bacterial spread,

resulting in higher rates of lethality. However, the majority of

the key findings, including identifying the presence of biofilm

visually, were performed in vitro. Furthermore, similar to

Akiyama et al [31,32] no assessment of wound healing or host

inflammatory mechanisms was performed despite the

demonstration of wild type virulence in vivo.

In a departure from murine models, a partial thickness,

cutaneous porcine wound model was developed by Davis et al

[34] to study the development of S aureus biofilm, including

following a topical antimicrobial challenge. Wounds were

inoculated with a 107 CFU/mL concentration of bacteria by

scraping off suspended bacteria from a culture media plate

onto eachwound,withmultiple endpoints including scanning

electron, light, and epifluorescence microscopy, as well as

bacterial count measurements. To form biofilm, wounds were

allowed to proliferate for 48 h following inoculation and

Tegaderm (3M Health Care, St. Paul, MN) occlusion to closely

model the seeding of bacteria in wounds that occurs clinically.

Through different microscopic modalities, they histo

morphologically revealed biofilm within wounds at 48 h, with

differential effects of topical antimicrobial treatments against

planktonic versus biofilm wounds over time. These results

were the first in vivo evidence of a phenotypic difference

between planktonic and biofilm bacteria. However, the use of

partial thickness wounds limits a direct correlation to many

human chronic wounds, which typically demonstrate full

thickness dermal loss as part of their healing impairment.

Furthermore, all major endpoints were evaluated relatively

early (48 h) after inoculation and, again, the authors did not

assess the effects of the bacteria on the healing of the partial

thickness wounds.

To simulate a more chronic wound setting, Nakagami et al

[35] have published the use of a pressure induced ischemic

wound model in rats to evaluate quorum sensing mecha

nisms of P aeruginosa. Following inoculation with approxi

mately 105 CFU/mL, a known P aeruginosa autoinducer that

functions to regulate many of the bacteria’s virulence factors,

was quantified along with wound viable bacterial counts.

Histologic analysis showed qualitatively higher levels of tissue

destruction and polymorphonuclear leukocytes infiltration in

infected wounds, with increasing amounts of the bacterial

autoinducer and viable bacterial counts over time. The

authors advocated that quantification of such autoinducers

may be a useful tool for clinical chronic wound diagnosis.

However, similar to previously discussed models, there was

no assessment of the wound healing impairment or host

inflammatory response that occurs following release of the

autoinducer. In addition, visual evidence of biofilm

morphology within the ischemic wounds was not presented,

which would have helped further validate their model and

results.

Simonetti et al [36] also addressed quorum sensing path

ways using a standard murine wound model, inoculating 5 �
107 CFU/mL of methicillin resistant S aureus into wounds.

Wounds were treated with different combinations of an

adhesive dressing, with or without RNAIII inhibiting peptide

(RIP), a quorum sensing inhibitor, and/or the antibiotic teico

planin. Quantitative measurement of histological wound

healing parameters, wound bacterial burden, and vascular

endothelial growth factor expression were performed,

demonstrating that RIP combined with teicoplanin was found

to show the greatest improvements in all measured endpoints

as compared to control. However, like many murine, wound

healing models, histological wound measurements may be

of unclear significance given the wound contracture associ

ated with murine healing.

In an effort to better recapitulate human wound healing,

work from our laboratory (Schierle et al [37]) utilized an

established splinted mouse model to minimize contracture.

The importance of minimizing contracture in rodent models

of healing is worth emphasizing, as this variable is ignored by

most rodent wound healing studies. By minimizing contrac

tures, wounds are allowed to heal by new tissue ingrowth,

more akin to human wounds, as opposed to myofibroblast

mediated contraction of the loose rodent skin. Treatment of

S aureus and Staphylococcus epidermidis wounds with RIP

showed a return of wound healing kinetics to that of control

wounds, along with a significant decrease in wound bacterial

load. In addition, the use of a biofilm deficient S aureus strain

also demonstrated improved rates of wound healing over

wild type wounds. In contrast, oxacillin treatment of wild

type wounds was unable to restore a healing phenotype,

presumably due to its inability to eradicate biofilm. These

results suggested that the biofilm state of S aureus had a direct

effect on delaying cutaneous wound healing in vivo, and

confirmed that therapeutics targeting the biofilm or quorum

sensing pathways of skin pathogens may have a clinical role

in improvingwound healing. It should be noted, however, that

no direct visualization of bacterial biofilm and its extracellular

matrix were performed, instead relying on Gram stains and

quantitative cultures to verify the presence of bacteria

presumed to be in a biofilm state in the wounds.

Incorporating another pillar of chronic wound pathogen

esis, a diabetic murine model with wound biofilm has been

described by Zhao et al [38]. Using full thickness circular

punch wounds in diabetic strain (db/db) mice, P aeruginosa

biofilms incubated on agar plates for 72 h were directly

transferred onto wounds 48 h post wounding, followed by

dressing occlusion for 2 wk. Dressingswere then removed and

wounds allowed to scab, with basic evaluation of gross and

histological healing, measurement of bacterial counts within

the scabs and wound beds, transmission electron microscopy

of wound scabs to determinemorphology and the presence of

immune cells. Compared with control wounds, biofilm

wounds demonstrated significantly delayed wound healing,

as well as inflammatory cell infiltration and tissue changes.

Furthermore, when wounds were allowed to scab, the

majority of bacteria was found to reside within the scabs of

biofilm wounds, with associated neutrophils as seen on

transmission electron microscopy. They reported reproduc

ibility and consistency in their results, and thus advocated

their model as another in vivo approach to study biofilm

related delays in chronic wound healing. However, inocula

tion was performed using the transfer of in vitro biofilms on

artificial filters. Although this technique is potentially effec

tive, it is not a physiologic representation of how biofilm

develops naturally develops within human wounds. In addi

tion, with no evidence of biofilmwithin thewounds but rather

in scabs, it is unclear the applicability of this model to
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With a goal of clinically translatable results, further model

development and improvement must continue to achieve

a faithful representation of the biofilms seen in human

chronic wounds. This may include modifications such as the

introduction of polybacterial species within a single biofilm or

the concurrent presence of systemic pathologies such as

diabetes or venous insufficiency. In addition, mechanistic

studies using bacterial mutants and/or targeted therapeutic

agents in these models will improve our understanding of the

in vivo pathways that dictate the resistance and defense

mechanisms of biofilm phase bacteria. As the sophistication

of in vivo biofilm modeling continues to grow, so will its

practical impact on understanding and treating human

chronic wounds, particularly when testing new hypotheses

that will better help us elucidate the organization and

persistence of biofilm communities in the susceptible human

wound.

It is notable that most chronic wounds are not malignant

and can persist in a state of coexistence with the patient for

years. We hypothesize that the complex interactions between

the multi species biofilm phenotype and the cutaneous

wound likely involves a type of mutualism, whereby the

bacteria employ a variety of decoy and signal manipulations

to impede epithelialization, thereby prolonging the persis

tence of the wound “niche” in which they flourish and exist.

Biofilms are also known to exhibit decreased levels of bacterial

proliferation while triggering only a low grade inflammatory

response from their host, further contributing to their main

tenancewithin awound [13]. Having likely evolved as ameans

to prevent their eradication from the wound habitat, it will be

difficult to restore biofilm infected wounds to a healing

phenotype without additional interventions. Through in vivo

biofilm modeling, we aim to validate this hypothesis while

testing those potential interventions that may have a signifi

cant impact on the future of chronic wound care.
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